
Design

4 CROSSTALK The Journal of Defense Software Engineering November 2005

The purpose of architecture is to
answer questions. In other words, the

architecture provides the information
needed by decision makers during the
course of the systems engineering
process to define concepts and processes,
allocate functionality, define test metrics,
design software, and make other develop-
ment decisions. However, the output of
the systems engineering (SE) process is
not the architecture; rather, it is the sys-
tem being produced [1]. Unfortunately,
the architecture often becomes divested
from the SE process it is meant to sup-
port, becoming an output or deliverable
in and of itself [2].

In part, this is perpetuated by govern-
ment regulations specifying that each
acquisition program produce architecture
with little thought as to how architecture
will be used by the program [3, 4, 5]. So,
the output of most architecture efforts
tends to be a three-ring binder that
weighs five pounds or so, which no one
ever reads. This has given a bad name to
the architecting process, and has left
many decision makers asking why they
spent their limited money and time pro-
ducing architectures.

To correct this situation, both the
software-centric and system-centric com-
munities need to reexamine the architect-
ing process, rediscover the intended uses
for architecture, and ensure architecting
is always done in support of the SE life
cycle. For software designers, this will
mean a break from the concept that four
or five standard Unified Modeling
Language (UML) diagrams will solve the
needs of all stakeholders. This article
presents one method for ensuring the
architecture is producing the products
needed to support the overall SE process.

Tying Architectures Into the
SE Process
The SE process has been described as
an elaborate engineering decision

process that includes the following [6]:
• Begins with understanding the sys-

tem requirements and specifications.
• Translates these specifications into a

conceptual design in the form of a
functional architecture.

• Translates this functional architec-
ture into logical design or physical
architecture.

• Translates the physical architecture
into a detailed design or implemen-
tation architecture for the system
ultimately to be produced or
acquired.

• Completes development through the
production of a product that con-
forms to this architecture, potential-
ly through various strategic sourcing
efforts and associated integration
and test.
These steps show the SE process for

what it really is – a series of decision
points leading up to a delivered product.
This means the architecture’s products
must be tied to the rest of the SE

process and, more specifically, to deci-
sion points within that process. This
allows the architect to determine what
products need to be produced, when to
produce them, and what level of detail
needs to be present. To tie architecture
products to decision points, the archi-
tect must understand what decisions
need to be made. It is a process that
begins with these questions:
1. What is the output of my SE

process?
2. What decisions need to be made to

produce the output?
3. What sort of information is needed

to make those decisions?
4. Which architecture products provide

the information in a format that is
understandable to the decision
maker?

5. When are the architecture products
needed?

6. How should my project be staffed to
produce those products?

7. Which software tools will help the
architect build those products?
For example, if the output of the SE

process is an electronic timecard sys-
tem, then decisions include these:
“What are the expectations of its
users?” “How many employees will use
it concurrently?” “What technology
options exist?” and “Which technical
option works best with the existing
timekeeping business process?”
Concerning the time card software
itself, the decision maker would proba-
bly like to know the advantages and dis-
advantages of different ways of enter-
ing time card data, ease of updating and
maintenance, and how the software will
interoperate with the business’ existing
software.

Each of these decisions is made at a
different point in the SE process, and
many of the decisions are interdepend-
ent. It is the architect’s job to recognize
this and suggest the appropriate mix of
architecture products that will provide

Selecting Architecture Products for a
Systems Development Program

Michael S. Russell
Anteon Corporation

Determining what architecture products are needed to support software development within a larger systems engineering process
is a challenge. Existing documents such as the Department of Defense Architecture Framework provide some guidance, but
no defined product identification process. The method proposed in this article provides a repeatable process for selecting the
architecture products required to support a larger systems engineering effort, defines the content of each product, and identi-
fies each product’s customer.

“Developing architecture
as part of a program’s

SE [systems engineering]
process can be a

critical component of the
program’s success, but

only if the right products
are identified and

produced at the right
time for the

right customer.”

Selecting Architecture Products for a Systems Development Program

the needed information – in essence,
answer the questions. Figure 1 describes
this process.

Please note that the last step in the
process concerns what software tools are
needed to build the architecture products.
Too often, a project starts with the
notion, “We’re using XX company’s
tool,” without considering how that soft-
ware will be used or even if it can be used
within the program’s existing SE process.
In fact, many of these tools assume an
SE process, and the software is optimized
to produce architecture products
designed for that process (i.e., the
Rational Unified Process) [7]. While this
is not necessarily a bad thing, it does
mean that the chosen tool is driving
product selection and the overall process
to produce the architecture products.
Sometimes this situation is directed such
as a program that is required to use a
model-driven architecture [8] approach.
Ideally, the software tool should be cho-
sen after the products to be built have
been identified.

Remember that decisions made early
in the SE process require different infor-
mation than those decisions made closer
to the end. For instance, describing the
business process that a new system will
support is done early on, while defining
software to support that process is done
later. Understanding when information is
useful to a decision maker is just as
important as understanding what infor-
mation he or she needs.

Finally, a system has many customers.
The electronic timecard system described
in the earlier example has an obvious cus-
tomer: the employee. However, there are
many other customers such as the system
developers, the company’s executives,
time card system vendors, and the com-
pany’s accounting department. Each of
these customers has an interest in the new
system, but each makes different deci-
sions and needs different information to
make those decisions. A well-built archi-
tecture takes all of these needs into con-
sideration and is capable of producing the
right architecture product, in the optimal
format, to meet each customer’s need.

The Product Identification
Process
The product identification process out-
lined in this article is a matrix-based
approach used successfully by several
DoD organizations over the past five
years, and is also taught in the Federal
Enterprise Architecture Certification
(FEAC) Institute’s [9] certification pro-

gram. The matrices can be produced
with most any office automation or
database software. However, the matrix
is normally put together in a spread-
sheet. To help examine how the process
would be implemented, a completed set
of matrices using the electronic time-
card example are included in the online
version of this article at <www.stsc.hill.
a f . m i l / c r o s s t a l k / 2 0 0 5 / 1 1 / 0 5 1 1
Russell.html>. The matrices presented
below contain a subset of the same
information.

Step One
Step one focuses on identifying the
architecture’s customers and determin-
ing each customer’s questions or deci-
sions they need to make. In the
Customer-Question Matrix (Figure 2),
the customers are listed along the top
axis and a list of questions along the left
axis. Next, the information needed to

answer each customer’s question is
added to the matrix. Developing this
matrix can be greatly improved by let-
ting each customer see the responses of
other customers. This typically results in
less question redundancy, especially
when the information needs between
customers are similar.

Step Two
In step two, the focus shifts from the
customer’s questions and decision
points to which architecture products
provide the information needed to
answer the questions or support a deci-
sion. It is important to remember that
even when several customers need simi-
lar information, the architecture prod-
uct and the level of detail for that prod-
uct might be different. For example, a
business executive and a programmer
would both need to understand the con-
cept for the company’s new timecard

November 2005 www.stsc.hill.af.mil 5

Business Owner/

Managers

Finance

Department

Information

Technology (IT)

Department

Users

How will

it be

deployed?

Deployment

milestones,

overarching plan, IT

integration plan.

Deployment

milestones,

overarching plan.

Deployment

milestones,

overarching plan,

interaction with

development team.

When the user must

start using it.

What data

has to be

saved?

Audit data

requirements,

payroll data

requirements,

time card business

rules.

Payroll data

requirements,

time card business

rules.

Frequency of data

backup and storage

requirements.

Need to track

available vacation

time.

What is the

testing plan?

Testing plan

schedule, integration

into overall

development plan.

Finance department

test input.

IT department test

input and

responsibilities.

User testing plan.

System

Concept and

Program

Plan

Activity and

Process

Diagrams

Business

Rules

Description

Web-Portal

Screen

Mock-up

Regulation

Compliance

Traceability

Matrix

Data

Model

System

Concept

Information

White paper Graphics

Federal and

State

Timekeeping

Regulation

Compliance

Text

document

 Spreadsheet

Data Needed

for Auditing,

Payroll,

Vacation

Tracking, and

Other

Requirements

Data flow

diagram

Graphics Spreadsheet UML class

diagram

Time Card

Usage, Review,

and Auditing

Business Rules

UML

activity

diagram

State chart Spreadsheet UML class

diagram

UML

activity

diagram

START

Determine how the customer will

use architecture

(Questions to be answered).

Choose the set of software

tools that support product

production.

Identify the set of

products that will produce

that information.

Define the information

the customer needs to answer

the question.

Questions:

Customers:

Information

Needed by

Each

Customer:

Architecture Products:

Figure 1: Product Identification Process

Business Owner/

Managers

Finance

Department

Information

Technology (IT)

Department

Users

How will

it be

deployed?

Deployment

milestones,

overarching plan, IT

integration plan.

Deployment

milestones,

overarching plan.

Deployment

milestones,

overarching plan,

interaction with

development team.

When the user must

start using it.

What data

has to be

saved?

Audit data

requirements,

payroll data

requirements,

time card business

rules.

Payroll data

requirements,

time card business

rules.

Frequency of data

backup and storage

requirements.

Need to track

available vacation

time.

What is the

testing plan?

Testing plan

schedule, integration

into overall

development plan.

Finance department

test input.

IT department test

input and

responsibilities.

User testing plan.

START

Determine how the customer will

use architecture

(Questions to be answered).

Choose the set of software

tools that support product

production.

Identify the set of

products that will produce

that information.

Define the information

the customer needs to answer

the question.

Questions:

Customers:

Architecture Products:

Figure 2: Customer-Question Matrix

system, but the level of detail needed by
each would be much different.

For this Product-Information Matrix
(Figure 3), the information needed by
each customer is listed on the left axis,
and architecture products that could
provide that information are listed
along the top axis. Quite often, the
information needed will span several
architecture products. For instance,
determining who can update a compa-
ny’s human resources database and
under what conditions an update can
occur may require activity diagrams, a
logical data model, a business rules
model, and other architecture products.

When possible, information needs as
described by the customers should be
consolidated so the matrix does not
become unwieldy, but only when the
information needed is at the same level
of detail. Although two customers may
need the same type of information to
answer their question, the information
they need may reflect a different level of
detail. For example, if a business owner
wants to understand database access

permissions, then a business rules
model might be the best architecture
product to provide the information.
However, the database developer would
need a data model based on the business
rules to build the database. Few busi-
ness owners will look at or understand a
data model, but it is the right product
for the developer.

Step Three
The next step in the process matches
each customer with the set of architec-
ture products they need to answer ques-
tions and make decisions in a timely
manner. This step gives the architecture
developers the information they need to
plan the architecture development
process and integrate it into the overall
SE process. The Customer-Product
Matrix (Figure 4) supports this map-
ping, identifies when each product is
needed, and highlights dependencies
between products. In this matrix, the
customers are again listed along the top
axis, while the architecture products are
listed on the left axis. Delivery dates,

product formats, i.e., activity diagram
versus data flow diagram, metrics, and
other information should be used to
indicate the mapping between cus-
tomers and products.

It is likely that a specific product
such as the activity model will be identified
as being used by multiple customers.
Keep in mind that each customer will
probably use his or her activity model in
a different manner, which should be
captured in the information section of the
first matrix. This means that there prob-
ably will not be one activity model for
the architecture. Rather, there will be
several views of the activity model that
are relevant to a specific customer’s
information needs, derived from the
same pool of architectural data.

Step Four
Now that architecture products needed
to support the SE process have been
identified, the last step is to choose the
software tools that the architects will use
to produce products in a format useful
for each customer’s decision-making
process. Typically, an executive-level deci-
sion maker will not want to look at a
product as displayed in a Computer
Aided Systems Engineering (CASE) tool,
while a software developer will not get
the information they need from a Power
Point presentation. So the architecture
should rely on a suite of tools to pro-
duce, store, and display the architecture’s
products. Each tool serves a defined pur-
pose within the architecture, and togeth-
er they support the creation and integra-
tion of the architecture.

Generally, there are four types of
software tools used to support architec-
ture development: CASE tools, databas-
es, executable modeling tools, and Web
sites. Normally, one tool of each type is
needed because each customer has dif-
ferent needs for viewing and using his
or her architecture products. One word
of caution, even though many vendors
will try to sell a one-size-fits-all software
solution, very few tools support all
aspects of your development process.
So choose the tool that provides the
information needed by that customer to
support his or her decision-making
process. Do not expect a customer to
modify his or her SE process or deci-
sion-making criteria just because your
software cannot deliver the architecture
in a form he or she can use.

Other Uses for the Matrices
Understanding what products to produce
is only half the challenge. The next chal-

Design

6 CROSSTALK The Journal of Defense Software Engineering November 2005

DEC DEC DEC

JAN – High Level

APR – Final

JAN – High Level

MAR – Detailed

JAN – High Level

MAR – Detailed

MAR – Detailed

JAN – Initial MAR – Detailed JAN – Initial

MAR – Detailed

APR – Final

APR

MAR – Business

Rule Text

FEB – UML Class

Diagram

Figure 4: Customer-Product Matrix

System Concept

Activity

and Process

Diagrams

Business Rules

Description

Regulation

Compliance

Traceability

Matrix

Data Model

Business Owner/

Managers

Finance

Department
IT Department Users

Architecture

Products:

Customer:

Figure 4: Customer-Product Matrix

development plan.

System

Concept and

Program

Plan

Activity and

Process

Diagrams

Business

Rules

Description

Web-Portal

Screen

Mock-up

Regulation

Compliance

Traceability

Matrix

Data

Model

System

Concept

Information

White paper Graphics

Federal and

State

Timekeeping

Regulation

Compliance

Text

document

 Spreadsheet

Data Needed

for Auditing,

Payroll,

Vacation

Tracking, and

Other

Requirements

Data flow

diagram

Graphics Spreadsheet UML class

diagram

Time Card

Usage, Review,

and Auditing

Business Rules

UML

activity

diagram

State chart Spreadsheet UML class

diagram

UML

activity

diagram

Information

Needed by

Each

Customer:

Architecture Products:

Figure 3: Product-Information Matrix

Selecting Architecture Products for a Systems Development Program

lenge is determining how to staff the
development project, including how
many people to hire and what skills those
people should have. The information
contained in the matrices can also help
answer these questions. For example,
data models are generally produced later
in the SE life cycle than system use cases
are produced, meaning a project may not
need to hire a data modeler at the very
beginning of the project. Likewise, a
completed set of matrices will normally
show a need for several systems analysts
toward the beginning of the life cycle,
one or two during the middle, and a large
group at the end during the test and eval-
uation stage.

So, by matching the expected deliv-
ery dates for each architecture product
captured in the matrix, a good initial
staff skill set and loading matrix can be
produced. Staffing choices are not
always intuitive, and the completed
matrices can significantly help the pro-
gram manager justify his project fund-
ing requirements by having hard num-
bers to base his staffing plan upon.

Conclusion
The purpose of architecture is to provide
the information needed by decision mak-
ers to make decisions. Developing an
architecture as part of a program’s SE
process can be a critical component of the
program’s success, but only if the right
products are identified and produced at
the right time for the right customer.

The matrix-based approach outlined
here has proven to be a repeatable and
successful process for its users. When
used early in the SE life cycle, it helps
focus developers on how the architec-
ture should be used by zeroing in on the
questions to be answered and the infor-
mation needed to answer those ques-
tions. During production, it helps set
customer expectations concerning the
types of products to be produced, the
level of effort and skills required to pro-
duce the products, and when each prod-
uct will be delivered. At any time during
the life cycle, the information can be
used to show what decisions need to be
made and what architectural informa-
tion these decisions should be based on.

Lastly, the matrices form a body of
knowledge that can be reused when
planning future projects.u

References
1. Rechtin, Eberhardt, and Mark Maier.

The Art of Systems Architecting.
Boca Raton, FL: CRC Press, 1997.

2. Maier, Mark, David Emery, and Rich

Hilliard. “ANSI/IEEE 1471 and
Systems Engineering.” Systems
Engineering 2.3 (1990): 168-176.

3. Office of the Secretary of Defense:
Acquisition Technology and Log-
istics. DoD 5000.1 The Defense
Acquisition System, Washington:
Department of Defense, 2003.

4. The Joint Staff. CJCSI 3170-01E, The
Joint Capabilities, Integration and
Development System, Washington:
Department of Defense, 2005.

5. Office of the Secretary of Defense
National Information Infrastructure.
The DoD Architecture Framework
Vers. 1, Washington: Department of
Defense, 2004.

6. Sage, Andrew, and Charles Lynch.
“Systems Integration and Architecting:
An Overview of Principles, Practices,
and Perspectives.” Systems Engineer-
ing 1.3 (1998): 176-227.

7. Kruchten, Philippe. The Rational
Unified Process. Reading, MA:
Addison Wesley Longman Inc., 1998.

8. Miller, Joaquin, and Jishnu Mukerji.
MDA Guide Vers. 1.0.1. Needham,
MA: Object Management Group, 12
June 2003.

9. The Federal Enterprise Architecture
Certification Institute. FEAC Insti-
tute. 25 Feb. 2005 <www.feacinstitute.
org>.

November 2005 www.stsc.hill.af.mil 7

About the Author

Michael S. Russell is
the director of Enter-
prise Architectures for
the Anteon Corpora-
tion’s Systems Engineer-
ing Group. He has

served as lead architect on numerous
federal, Department of Defense, and
industry enterprise architecture efforts.
He is a lecturer with the Federal
Enterprise Architecture Certification
Institute and is a member of the
International Council on Systems
Engineering. He has taught courses in
systems engineering for the past seven
years, and has published several articles
on systems engineering topics. He has a
Master of Science in systems engineer-
ing from George Mason University.

Anteon Corporation
2231 Crystal DR STE 600
Arlington,VA 22202
Phone: (703) 769-6160
E-mail: mrussell@anteon.com

COMING EVENTS

December 4-7
WSC ’05

Winter Simulation Conference

Orlando, FL
www.wintersim.org

December 5-8
The 26th Institute of Electrical and

Electronics Engineers Real-Time Systems

Symposium

Miami, FL
www.rtss.org/rtss2005.html

December 5-9
Annual Computer Security Applications

Conference ACSAC 2005

Tucson, AZ
www.acsac.org

December 7-9
I-SPAN 2005

International Symposium on Parallel

Architectures, Algorithms, and Networks

Las Vegas, NV
http://sigact.acm.org/ispan05

December 11-14
ICIS 2005

International Conference on

Information Systems

Las Vegas, NV
http://icis2005.unlv.edu/

December 19-21
Collaborate COM 2005

San Jose, CA
www.collaboratecom.org/index.php

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

